Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 123: 110486, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34004391

RESUMO

During walking, falling is most likely to occur towards the side of the supporting lower limb during the single stance. Timely lateral redirection of the centre of mass (CoM) preceding the no-return position is necessary for balance. We analysed the curvature peaks (the inverse of the radius of curvature) of the three-dimensional path of the CoM during the entire stride. Twelve healthy adults walked on a force-sensorized treadmill at constant velocities from 0.4 to 1.2 m s-1, in 0.2 m s-1 increments. The three-dimensional displacements of the CoM, the muscular power sustaining the CoM motion with respect to the ground, and the efficiency of the pendulum-like transfer of the CoM were computed via the double integration of the ground reaction forces. The curvatures of the CoM trajectory were measured (Frenet-Serret formula). During the single stance, the curvature showed a bell-shaped increment, lasting a few tenths of a millisecond, and peaking at 365-683 m-1 (radius of 2.7-1.4 mm, respectively), the higher the walking velocity. The CoM was redirected towards the swinging lower limb. The curvature increment was sustained by muscle-driven braking of the CoM. Smoother increments of curvature (peaking at approximately 37-150 m-1), further orienting the CoM towards the leading lower limb, were observed during the double stance. The peaks of the curvatures were symmetric between the two sides. The high curvature peaks during the single stance may represent an index of dynamic balance during walking. This index might be useful for both rehabilitation and sports training purposes.


Assuntos
Marcha , Caminhada , Adulto , Fenômenos Biomecânicos , Teste de Esforço , Humanos , Equilíbrio Postural
2.
Am J Phys Med Rehabil ; 100(6): 620-624, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33998608

RESUMO

ABSTRACT: Walking on split-belt treadmills (each belt rotating at a different velocity) has inspired a growing number of researchers to study gait adaptation and rehabilitation. An overlooked peculiarity of this artificial form of gait is that the mean velocity adopted by the participant, considered as a whole system represented by the body Center of Mass, can be different from the mean velocity of the two belts. Twelve healthy adults (21-34 yrs) were requested to walk for 15 mins on a treadmill with belts rotating at 0.4 and 1.2 m sec-1, respectively (mean = 0.8 m sec-1). Each belt was supported by four 3-dimensional force sensors. For each participant, six strides were analyzed during the 1st and the 15th minute of the trial. The mean Center of Mass velocity was computed as the sum of the velocities of each belt weighted by the percentage of time during which the resulting forces, underlying the accelerations of the Center of Mass, originated from each belt. Across early and late observations, the median Center of Mass velocities were 0.72 and 0.67 m sec-1, respectively (P < 0.05). Therefore, the real velocity of the Center of Mass and its time course should be individually assessed when studying walking on split-belt treadmills.


Assuntos
Teste de Esforço/métodos , Marcha/fisiologia , Caminhada/fisiologia , Aceleração , Adulto , Teste de Esforço/instrumentação , Feminino , Voluntários Saudáveis , Humanos , Masculino , Velocidade de Caminhada/fisiologia , Adulto Jovem
3.
Int J Rehabil Res ; 42(2): 112-119, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30882528

RESUMO

Few studies have investigated the kinematic aspects of the body centre of mass motion, that is, its three-dimensional path during strides and their changes with child development. This study aimed to describe the three-dimensional path of the centre of mass in children while walking in order to disentangle the effect of age from that of absolute forward speed and body size and to define preliminary pediatric normative values. The three-dimensional path of the centre of mass during walking was compared across healthy children 5-6- years (n = 6), 7-8 years (n = 6), 9-10 years (n = 5), and 11-13 years of age (n = 5) and healthy adults (23-48 years, n = 6). Participants walked on a force-sensing treadmill at various speeds, and height normalization of speed was conducted with the dimensionless Froude number. The total length and maximal lateral, vertical, and forward displacements of the centre of mass path were calculated from the ground reaction forces during complete strides and were scaled to the participant's height. The centre of mass path showed a curved figure-of-eight shape. Once adjusted for speed and participants' height, as age increased, there was a decrease in the three-dimensional parameters and in the lateral displacement, with values approaching those of adults. At each step, lateral redirection of the centre of mass requires brisk transient muscle power output. The base of support becomes relatively narrower with increasing age. Skilled shortening of the lateral displacement of the centre of mass may therefore decrease the risk of falling sideways. The three-dimensional path of the centre of mass may represent maturation of neural control of gait during growth.


Assuntos
Desenvolvimento Infantil/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Adolescente , Adulto , Envelhecimento/fisiologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Int J Rehabil Res ; 41(4): 304-315, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30303831

RESUMO

Walking on a split-belt treadmill (each of the two belts running at a different speed) has been proposed as an experimental paradigm to investigate the flexibility of the neural control of gait and as a form of therapeutic exercise. However, the scarcity of dynamic investigations challenges the validity of the available findings. The aim of the present study was to investigate the dynamic asymmetries of lower limbs of healthy adults during adaptation to gait on a split-belt treadmill. Ten healthy adults walked on a split-belt treadmill mounted on force sensors, with belts running either at the same speed ('tied' condition) or at different speeds ('split' condition, 0.4 vs. 0.8 or 0.8 vs. 1.2 m/s). The sagittal power and work provided by ankle, knee and hip joints, joint rotations, muscle lengthening, and surface electromyography were recorded simultaneously. Various tied/split walking sequences were requested. In the split condition a marked asymmetry between the parameters recorded from each of the two lower limbs, in particular from the ankle joint, was recorded. The work provided by the ankle (the main engine of body propulsion) was 4.8 and 2.2 times higher (in the 0.4 vs. 0.8, and 0.8 vs. 1.2 m/s conditions, respectively) compared with the slower side, and 1.2 and 1.1 times higher compared with the same speed in the tied condition. Compared with overground gait in hemiplegia, split gait entails an opposite spatial and dynamic asymmetry. The faster leg mimics the paretic limb temporally, but the unimpaired limb from the spatial and dynamic point of view. These differences challenge the proposed protocols of split gait as forms of therapeutic exercise.


Assuntos
Fenômenos Biomecânicos/fisiologia , Teste de Esforço , Lateralidade Funcional/fisiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Hemiplegia/fisiopatologia , Perna (Membro)/inervação , Caminhada/fisiologia , Adulto , Articulação do Tornozelo/inervação , Articulação do Tornozelo/fisiopatologia , Feminino , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/reabilitação , Hemiplegia/diagnóstico , Hemiplegia/reabilitação , Articulação do Quadril/inervação , Articulação do Quadril/fisiopatologia , Humanos , Articulação do Joelho/inervação , Articulação do Joelho/fisiopatologia , Perna (Membro)/fisiopatologia , Masculino , Valores de Referência , Reprodutibilidade dos Testes
5.
Int J Rehabil Res ; 40(4): 315-324, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28719477

RESUMO

Gait analysis (GA) typically includes surface electromyographic (sEMG) recording from several lower limb muscles, optoelectronic measurement of joint rotations, and force recordings from ground-based platforms. From the latter two variables, the muscle power acting on the lower limb joints can be estimated. Recently, gait analysis on a split-belt force treadmill (GAFT) was validated for the study of adult walking. It showed high reliability of spatiotemporal, kinematic, dynamic, and sEMG parameters, matching those obtainable with GA on the basis of ground walking. GAFT, however, still needs validation in children. Potential differences with respect to adult GAFT relate to (a) possible high signal-to-noise ratio, given the lower forces applied; (b) higher differences between treadmill and over-ground walking; and (c) limited compliance with the experimental setup. This study aims at investigating whether GAFT provides results comparable with those obtainable from ground walking in children and consistent with results from GAFT in adults. GAFT was applied to three groups of healthy children aged 5-6 years (n=6), 7-8 years (n=6), and 9-13 years (n=8) walking at the same average speed spontaneously adopted overground. The results were compared with those obtained from another study applying GA to an age-matched and speed-matched sample of 47 children, and with those obtained from GAFT in adults. The reliability (as indicated by the SD) of both spatiotemporal and dynamic parameters was higher in GAFT compared with GA. In the 5-6-, 7-8-, and 9-13-year-old groups, at average speeds of 0.83, 1.08, and 1.08 m/s, step length was shorter by 9.19, 3.57, and 2.30% compared with GA in controls at comparable speeds, respectively. For the youngest group, a lower power generation from the plantar flexors (peak power: 1.35±0.32 vs. 2.11±1.02 W/kg) and a slightly more flexed posture of the hip, knee, and ankle joints were observed during GAFT compared with GA in controls. The other gait parameters were very similar between the GAFT and the GA groups. The shortening of step length during GAFT, relative to GA at superimposable speed, was on average of all children 6.8%, in line with the 8% decrease found in adults. The profiles of sEMG and joint rotations, and all of the weight-standardized joint power parameters, matched those recorded in adults. The entire experimental session lasted about 1 h. All children complied with the experimental setting and easily completed the requested tests. In conclusion, GAFT seems to be a promising alternative to conventional GA in children.


Assuntos
Teste de Esforço/instrumentação , Marcha/fisiologia , Adolescente , Fenômenos Biomecânicos/fisiologia , Estudos de Casos e Controles , Criança , Eletromiografia , Feminino , Humanos , Articulações/fisiologia , Extremidade Inferior/fisiologia , Masculino , Reprodutibilidade dos Testes , Caminhada/fisiologia
6.
Int J Rehabil Res ; 40(3): 254-267, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28574860

RESUMO

In hemiplegic gait the paretic lower limb provides less muscle power and shows a briefer stance compared with the unaffected limb. Yet, a longer stance and a higher power can be obtained from the paretic lower limb if gait speed is increased. This supports the existence of a 'learned non-use' phenomenon, similar to that underlying some asymmetric impairments of the motion of the eyes and of the upper limbs. Crouch gait (CG) (bent-hip bent-knee, about 30° minimum knee flexion) might be an effective form of 'forced-use' treatment of the paretic lower limb. It is not known whether it also stimulates a more symmetric muscle power output. Gait analysis on a force treadmill was carried out in 12 healthy adults and seven hemiplegic patients (1-127 months after stroke, median: 1.6). Speed was imposed at 0.3 m/s. Step length and single and double stance times, sagittal joint rotations, peak positive power, and work in extension of the hip, knee, and ankle (plantar flexion), and surface electromyography (sEMG) area from extensor muscles during the generation of power were measured on either side during both erect and crouch walking. Significance was set at P less than 0.05; corrections for multiplicity were applied. Patients, compared with healthy controls, adopted in both gait modalities and on both sides a shorter step length (61-84%) as well as a shorter stance (76-90%) and swing (63-83%) time. As a rule, they also provided a higher muscular work (median: 137%, range: 77-250%) paralleled by a greater sEMG area (median: 174%, range: 75-185%). In erect gait, the generation of peak extensor power across hip, knee, and ankle joints was in general lower (83-90%) from the paretic limb and higher (98-165%) from the unaffected limb compared with control values. In CG, peak power generation across the three lower limb joints was invariably higher in hemiparetic patients: 107-177% from the paretic limb and 114-231% from the unaffected limb. When gait shifted from erect to crouch, only for hemiplegic patients, at the hip, the paretic/unaffected ratio increased significantly. For peak power, work, sEMG area, and joint rotation, the paretic/unaffected ratio increased from 55 to 85%, 56 to 72%, 68 to 91%, and 67 to 93%, respectively. CG appears to be an effective form of forced-use exercise eliciting more power and work from the paretic lower limb muscles sustained by a greater neural drive. It also seems effective in forcing a more symmetric power and work from the hip extensor muscles, but neither from the knee nor the ankle.


Assuntos
Terapia por Exercício/métodos , Transtornos Neurológicos da Marcha/reabilitação , Paresia/reabilitação , Postura , Reabilitação do Acidente Vascular Cerebral/métodos , Caminhada , Adulto , Idoso , Fenômenos Biomecânicos , Eletromiografia , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Equilíbrio Postural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...